Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Diagram object detection is the key basis of practical applications such as textbook question answering. Because the diagram mainly consists of simple lines and color blocks, its visual features are sparser than those of natural images. In addition, diagrams usually express diverse knowledge, in which there are many low-frequency object categories in diagrams. These lead to the fact that traditional data-driven detection model is not suitable for diagrams. In this work, we propose a gestalt-perception transformer model for diagram object detection, which is based on an encoder-decoder architecture. Gestalt perception contains a series of laws to explain human perception, that the human visual system tends to perceive patches in an image that are similar, close or connected without abrupt directional changes as a perceptual whole object. Inspired by these thoughts, we build a gestalt-perception graph in transformer encoder, which is composed of diagram patches as nodes and the relationships between patches as edges. This graph aims to group these patches into objects via laws of similarity, proximity, and smoothness implied in these edges, so that the meaningful objects can be effectively detected. The experimental results demonstrate that the proposed GPTR achieves the best results in the diagram object detection task. Our model also obtains comparable results over the competitors in natural image object detection.
translated by 谷歌翻译
Conversational recommender systems (CRSs) often utilize external knowledge graphs (KGs) to introduce rich semantic information and recommend relevant items through natural language dialogues. However, original KGs employed in existing CRSs are often incomplete and sparse, which limits the reasoning capability in recommendation. Moreover, only few of existing studies exploit the dialogue context to dynamically refine knowledge from KGs for better recommendation. To address the above issues, we propose the Variational Reasoning over Incomplete KGs Conversational Recommender (VRICR). Our key idea is to incorporate the large dialogue corpus naturally accompanied with CRSs to enhance the incomplete KGs; and perform dynamic knowledge reasoning conditioned on the dialogue context. Specifically, we denote the dialogue-specific subgraphs of KGs as latent variables with categorical priors for adaptive knowledge graphs refactor. We propose a variational Bayesian method to approximate posterior distributions over dialogue-specific subgraphs, which not only leverages the dialogue corpus for restructuring missing entity relations but also dynamically selects knowledge based on the dialogue context. Finally, we infuse the dialogue-specific subgraphs to decode the recommendation and responses. We conduct experiments on two benchmark CRSs datasets. Experimental results confirm the effectiveness of our proposed method.
translated by 谷歌翻译
Recently, over-height vehicle strike frequently occurs, causing great economic cost and serious safety problems. Hence, an alert system which can accurately discover any possible height limiting devices in advance is necessary to be employed in modern large or medium sized cars, such as touring cars. Detecting and estimating the height limiting devices act as the key point of a successful height limit alert system. Though there are some works research height limit estimation, existing methods are either too computational expensive or not accurate enough. In this paper, we propose a novel stereo-based pipeline named SHLE for height limit estimation. Our SHLE pipeline consists of two stages. In stage 1, a novel devices detection and tracking scheme is introduced, which accurately locate the height limit devices in the left or right image. Then, in stage 2, the depth is temporally measured, extracted and filtered to calculate the height limit device. To benchmark the height limit estimation task, we build a large-scale dataset named "Disparity Height", where stereo images, pre-computed disparities and ground-truth height limit annotations are provided. We conducted extensive experiments on "Disparity Height" and the results show that SHLE achieves an average error below than 10cm though the car is 70m away from the devices. Our method also outperforms all compared baselines and achieves state-of-the-art performance. Code is available at https://github.com/Yang-Kaixing/SHLE.
translated by 谷歌翻译
When a large language model (LLM) performs complex reasoning by chain of thought (CoT), it can be highly sensitive to individual mistakes. We have had to train verifiers to address this issue. As we all know, after human inferring a conclusion, they often check it by re-verifying it, which can avoid some mistakes. We propose a new method called self-verification that uses the conclusion of the CoT as a condition to build a new sample and asks the LLM to re-predict the original conditions which be masked. We calculate an explainable verification score based on the accuracy. This method can improve the accuracy of multiple arithmetics and logical reasoning datasets when using few-shot learning. we have demonstrated that LLMs can conduct explainable self-verification of their own conclusions and achieve competitive reasoning performance. Extensive experimentals have demonstrated that our method can help multiple large language models with self-verification can avoid interference from incorrect CoT. Code is available at \url{https://github.com/WENGSYX/Self-Verification}
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
Recently, density map regression-based methods have dominated in crowd counting owing to their excellent fitting ability on density distribution. However, further improvement tends to saturate mainly because of the confusing background noise and the large density variation. In this paper, we propose a Hierarchically Decoupled Network (HDNet) to solve the above two problems within a unified framework. Specifically, a background classification sub-task is decomposed from the density map prediction task, which is then assigned to a Density Decoupling Module (DDM) to exploit its highly discriminative ability. For the remaining foreground prediction sub-task, it is further hierarchically decomposed to several density-specific sub-tasks by the DDM, which are then solved by the regression-based experts in a Foreground Density Estimation Module (FDEM). Although the proposed strategy effectively reduces the hypothesis space so as to relieve the optimization for those task-specific experts, the high correlation of these sub-tasks are ignored. Therefore, we introduce three types of interaction strategies to unify the whole framework, which are Feature Interaction, Gradient Interaction, and Scale Interaction. Integrated with the above spirits, HDNet achieves state-of-the-art performance on several popular counting benchmarks.
translated by 谷歌翻译
Federated Learning (FL) is pervasive in privacy-focused IoT environments since it enables avoiding privacy leakage by training models with gradients instead of data. Recent works show the uploaded gradients can be employed to reconstruct data, i.e., gradient leakage attacks, and several defenses are designed to alleviate the risk by tweaking the gradients. However, these defenses exhibit weak resilience against threatening attacks, as the effectiveness builds upon the unrealistic assumptions that deep neural networks are simplified as linear models. In this paper, without such unrealistic assumptions, we present a novel defense, called Refiner, instead of perturbing gradients, which refines ground-truth data to craft robust data that yields sufficient utility but with the least amount of privacy information, and then the gradients of robust data are uploaded. To craft robust data, Refiner promotes the gradients of critical parameters associated with robust data to close ground-truth ones while leaving the gradients of trivial parameters to safeguard privacy. Moreover, to exploit the gradients of trivial parameters, Refiner utilizes a well-designed evaluation network to steer robust data far away from ground-truth data, thereby alleviating privacy leakage risk. Extensive experiments across multiple benchmark datasets demonstrate the superior defense effectiveness of Refiner at defending against state-of-the-art threats.
translated by 谷歌翻译